TOEROEK ASSOCIATES, INC.

July 26, 2018

Mr. Brian Mitchell Task Order Contracting Officer Representative U.S. Environmental Protection Agency, Region 7 (EPA Region 7) 11201 Renner Boulevard Lenexa, KS 66219

Subject: Monitoring Well Installation and Groundwater Sampling Event

Final Report of Findings

Former Electrolux, Inc. Facility, Jefferson, Iowa

Contract No. EP-W-13-002, Task Order 035, Technical Directive No. 8

Dear Mr. Mitchell:

The Toeroek Associates, Inc. team is pleased to submit the Final Monitoring Well Installation and Groundwater Sampling Event Report of Findings at the former Electrolux, Inc. facility in Jefferson, Iowa. Revisions were made in accordance with comments received July 24, 2018.

Please call me at (816) 412-1760 if you have any questions regarding this submittal.

Sincerely,

Lauren Holt

Lauren Holt

Task Order 35, Technical Directive No. 8 Manager

Attachment

Kristy Throckmorton, Regional Task Order Contracting Officer cc:

Representative (cover letter only)

Paul Kieler, Toeroek Team Program Manager (cover letter only)

Kathy Homer, Toeroek Team Regional Manager (cover letter only)

File

RCRA

300 Union Blvd., Suite 520 Lakewood, CO 80228 303-420-7735

Fax: 303-420-7658

FORMER ELECTROLUX, INC. FACILITY JEFFERSON, IOWA MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING EVENT FINAL REPORT OF FINDINGS

PREPARED FOR

U.S. ENVIRONMENTAL PROTECTION AGENCY REGION 7

Task Order No. : 035
Technical Directive No. : 8
EPA Region : 7

Date Prepared : July 26, 2018
Contract No. : EP-W-13-002
Prepared by : Toeroek Team
Toeroek Team TD Mgr. : Lauren Holt
Telephone Number : (816) 412-1760
EPA TOCOR : Brian Mitchell
Telephone No. : (913) 551-7633

CONTENTS

Section	<u>n</u>	<u>P</u>	age
EXEC	UTIVE	SUMMARY	iii
1.0	INTR	ODUCTION	1
	1.1 1.2	PURPOSE OF REPORTREPORT ORGANIZATION	
2.0	SITE	BACKGROUND	2
	2.1 2.2 2.3	SITE LOCATION	2
3.0	SITE	ACTIVITIES	4
	3.1 3.2 3.3 3.4 3.5	WELL INSTALLATIONS	6 7 7
4.0	ANAI	LYTICAL DATA SUMMARY	9
	4.1 4.2	GROUNDWATER SAMPLE RESULTS QUALITY ASSURANCE/QUALITY CONTROL SAMPLING	9 9
5.0	DEVL	ATIONS FROM THE SAP AND QAPP	. 10
6.0	CONC	CLUSIONS	.11
7.0	REFE	RENCES	. 12

CONTENTS (Continued)

APPENDICES

Appendix

A	FIGURES
В	PHOTOGRAPHIC LOG
C	FIELD LOGBOOK
D	FIELD SHEETS AND CHAIN OF CUSTODY
Е	ANALYTICAL DATA
F	BORING LOGS
G	MONITORING WELL CONSTRUCTION FORMS
Н	MONITORING WELL DEVELOPMENT FORMS
I	MONITORING WELL SURVEY DATA
	TABLES
<u>Table</u>	<u>Page</u>
1	MONITORING WELL LOCATIONS6
2	SUMMARY OF SAMPLES7
3	SUMMARY OF SAMPLE RESULTS9

EXECUTIVE SUMMARY

The Toeroek Associates, Inc. (Toeroek) Team received Task Order No. 035 from the U.S. Environmental Protection Agency (EPA), under Contract No. EP-W-13-002, to provide assistance to Resource Conservation and Recovery Act (RCRA) state and federal program staff in EPA Region 7. Specifically, under Technical Directive No. 8 in Option Year 4 for this task order, EPA Region 7 requested that the Toeroek Team (which includes the Toeroek Team subcontractor Tetra Tech, Inc. [Tetra Tech]), as part of a groundwater sampling investigation, install two permanent monitoring wells downgradient of the former Electrolux, Inc. (Electrolux) facility (the facility) in Jefferson, Iowa.

Investigation activities occurred May 21 through 25, 2018. The purpose of the sampling investigation was to determine if facility-related contamination had migrated downgradient toward City of Jefferson municipal water supply wells.

The Toeroek Team collected groundwater samples from the two newly installed monitoring wells downgradient of the facility. Based on data acquired during the sampling investigation, no facility-related contamination was found; however, minor amounts of chloroform were detected in samples collected at MW-1 (3.1 micrograms per liter [μ g/L]) and MW-2 (6.4J μ g/L and 8.1 μ g/L [field duplicate]). In no sample did the chloroform concentration exceed the maximum contaminant level (MCL) of 80 μ g/L. The chloroform may be attributed to the use of chlorinated municipal water during the drilling process, or it could have been a laboratory contaminant.

1.0 INTRODUCTION

The Toeroek Associates, Inc. (Toeroek) Team received Task Order No. 035 from the U.S. Environmental Protection Agency (EPA), under Contract No. EP-W-13-002, to provide assistance to Resource Conservation and Recovery Act (RCRA) state and federal program staff in EPA Region 7. Specifically, under Technical Directive No. 8 in Option Year 4 for this task order, EPA Region 7 requested that the Toeroek Team (which includes the Toeroek Team subcontractor Tetra Tech, Inc. [Tetra Tech]), as part of the groundwater sampling investigation, install two permanent monitoring wells downgradient of the former Electrolux, Inc., (Electrolux) facility (the facility) in Jefferson, Iowa (see Appendix A, Figure 1).

As directed by the Technical Directive Performance Work Statement for Technical Directive No. 3 in Option Year 3 for this task order, the Toeroek Team had previously developed a Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP) for the groundwater sampling investigation near the facility. Subsequent field implementation of the SAP and QAPP was completed in conformance to Technical Directive No. 8 in Option Year 4 for this task order. This report summarizes facility background information, field sampling techniques, and analytical results from the EPA Region 7 laboratory.

1.1 PURPOSE OF REPORT

The intent of this report is to chronicle installation, development, and sampling of two permanent monitoring wells downgradient of the facility. The purpose of the sampling investigation was to determine if potential facility-related contamination had migrated downgradient toward City of Jefferson municipal wells.

1.2 REPORT ORGANIZATION

The format of this report complies with requirements outlined in Section 1.0 of the Toeroek Team's "Programmatic Quality Assurance Project Plan, Revision 00," prepared for EPA Region 7 under Contract No. EP-W-13-002 (Toeroek 2013). The report is organized as follows: Section 1.0 presents introductory information, Section 2.0 discusses facility background, Section 3.0 describes site activities, Section 4.0 discusses analytical data, Section 5.0 identifies any deviations from the SAP and QAPP, Section 6.0 summarizes conclusions, and Section 7.0 lists references cited in the report.

2.0 SITE BACKGROUND

This section briefly describes the facility location and demographics, the history of facility operations and regulatory history, and physical conditions in the area of the facility.

2.1 SITE LOCATION

The former Electrolux facility is at 601 East Central Avenue in Jefferson, Greene County, Iowa. The facility lies within the southeast quarter of Section 5, Township 83 North, Range 30 West (see Appendix A, Figure 1). The facility occupies an approximately 20.75-acre parcel zoned for industrial use (Greene County, Iowa Assessor's Office 2016).

2.2 HISTORICAL SITE USE AND PREVIOUS INVESTIGATIONS

The 20.75-acre Electrolux property formerly included a 75,500-square-foot facility used for manufacture of dishwasher motor transmissions from 1960 until decommissioned in March 2011. The manufacturing building was demolished; all that now remains is a 7.5-acre area of concrete building slabs, parking lots, fencing, and sidewalks where manufacturing activities previously occurred (see Appendix A, Figure 2). In 2010, Electrolux began to assess possible presence of subsurface contamination derived from manufacturing activities. A phased site assessment approach was followed from 2010 through 2013 to assess facility subsurface soil and groundwater conditions downgradient of and in areas exterior to the former manufacturing area. Additional groundwater monitoring occurred in 2014, and a Site Assessment and Summary Report that included a conceptual site model was completed in October 2016 (Golder Associates, Inc. [Golder] 2016).

Results from the site assessments indicated that soil and groundwater at the facility were contaminated with chlorinated volatile organic compounds (CVOC), primarily trichloroethene (TCE) and its breakdown constituents, within glacial tills (identified between 0 and 40 feet below ground surface [bgs]). CVOC-impacted soils were found only within the footprint of the former facility and adjacent landscaped areas, within 1 to 7 feet bgs. Highest concentrations of CVOCs in groundwater were detected in the yellow brown till within approximately 30 to 40 feet bgs near the southeast portion of the former facility. The October 2016 Site Assessment report concluded that natural attenuation and chlorinated degradation were occurring at the facility, and that the extent of contamination was confined within Electrolux property boundaries. Sources of volatile organic compound (VOC) contamination at the facility are believed to be former manufacturing operations within the eastern portion of the facility (Golder 2016).

An additional investigation completed in April 2017 included collection of groundwater samples at downgradient locations by use of a direct-push technology (DPT) drilling rig. No VOCs were detected in any of the samples collected during the sampling event. (Toeroek 2017).

2.3 PHYSICAL SETTING

The former Electrolux facility is in an industrial and agricultural area on the northeast side of Jefferson, Iowa. Within the fenced perimeter of the former facility property is a mix of concrete building slabs, sidewalks, paved parking lots, and landscaped areas. The facility is bordered to the north by East Central Avenue, east by agricultural cropland, and south and west by Union Pacific Railroad tracks. Adjacent properties to the north and east are agricultural, and include several grain storage and processing facilities. Properties to the south and west are primarily agricultural and residential.

The facility is at a surface elevation of approximately 1,050 feet above mean sea level. Regional topography slopes to the south-southeast toward Hardin Creek (U.S. Geological Survey [USGS] 1986).

Documents obtained from the Jefferson Water Department Source Water Protection Plan indicate that the southwest portion of the former facility is within the 10-year capture zone of four of the six Jefferson water supply wells screened in a Pleistocene sand and gravel complex at approximately 150 feet bgs (Tetra Tech 2016).

3.0 SITE ACTIVITIES

The Toeroek team installed two permanent monitoring wells and conducted sampling activities downgradient of the facility from May 21 through 25, 2018, to determine if potential facility-related contamination had migrated downgradient toward City of Jefferson municipal wells. The SAP and QAPP called for installation and development of two permanent monitoring wells, collection of two groundwater samples from each well using micro-purge ("low-flow") sampling methodology, and a survey of each well to determine accurate global positioning system (GPS) coordinates, as well as elevations of the ground surface and top of casing in feet above mean sea level (AMSL).

The following sections describe sampling investigation activities. Photographic documentation is in Appendix B, and a site-specific field logbook is in Appendix C.

3.1 WELL INSTALLATIONS

EPA tasked the Toeroek team to install two permanent monitoring wells in order to determine if potential contamination from the former Electrolux facility has migrated downgradient and into the Pleistocene sand and gravel complex that supplies the City of Jefferson municipal water wells at approximately 150 feet bgs.

Drilling, installation, and development of the monitoring wells was completed by Cascade Drilling, L.P. of Schofield, Wisconsin, by use of rotary sonic technology. Well construction consisted of 2-inch inner diameter (I.D.), schedule 40 polyvinyl chloride (PVC) risers and screens. Screen lengths were 10 feet with 0.01-inch slot size. Sand pack consisted of Red Flint #40-mesh silica sand. Cetco 3/8" bentonite pellets were used to seal the wells, and a Portland cement and bentonite grout mixture was added to approximately 1 foot bgs. All wells were flush-mount completed.

Well Installation

MW-1 was installed within the city right-of-way approximately 20 feet east of North Cedar Street and 100 feet south of the Union Pacific Railroad. The boring for MW-1 was advanced entirely via rotary sonic technology to total depth of 150 feet bgs. The boring was backfilled with bentonite to 100 feet bgs, with an additional 2 feet of #40-mesh silica sand, before placement of the screen from 88 to 98 feet bgs in a silty, clayey, well-sorted medium to coarse-grained sand.

MW-2 was installed within the city right-of-way on the north side of East Adams Street approximately 1,700 feet east of North Cedar Street. The boring for MW-2 was advanced entirely via rotary sonic technology to total depth of 150 feet bgs. The boring was backfilled with bentonite to 134 feet bgs, with an additional 2 feet of #40-mesh silica sand, before placement of the screen from 123 to 133 feet bgs in very fine to fine-grained buff sand.

Well Development

After allowance of 24 hours for the grout to set, the monitoring wells were developed via a combination of pumping and surging. Primary goals of the well development process were to (1) remove water used during the drilling process; (2) ensure that groundwater could pass through well screens unobstructed, thereby generating representative groundwater samples and accurate water level measurements; and (3) remove very fine-grained particles from the filter pack and surrounding subsurface sediments to prevent siltation of the wells and to preclude turbidity in future groundwater samples.

A submersible purging pump was used to develop each well. The pump was lowered to a position approximately 3 feet above the bottom of the well. At 10-minute intervals, the pump was pulled about 20 feet toward the surface and re-lowered to surge the well. Development would continue until the volumes of water added to the augers in the course of drilling had been removed, the water was visually clear, and water quality testing parameters (temperature, conductivity, pH, dissolved oxygen [DO], oxidation-reduction potential [ORP], and turbidity) had stabilized within 10 percent in three consecutive readings. Total volumes of water added during the drilling process were not removed from MW-1 and MW-2. Water quality testing parameters were not collected at MW-1 due to low recharge rate. Further details regarding these deviations are provided in Section 5 of this report.

Bolton & Menk of Jefferson, Iowa was subcontracted to survey horizontal and vertical coordinates of the newly installed wells following completion. Table 1 lists well numbers, well depths, screen intervals, and survey data pertaining to the newly installed monitoring wells.

TABLE 1

MONITORING WELL LOCATIONS FORMER ELECTROLUX, INC. FACILITY - JEFFERSON, IOWA

Well	Well	Screen	Loc	ation	Elevation
Number	Depth (ft bgs)	Interval (ft bgs)	Latitude	Longitude	Ground (ft amsl)
MW-1	98	88-98	42° 1' 21.77881"	- 94° 22' 9.47792"	1186.93
MW-2	132	123-133	42° 1' 5.92272"	- 94° 21' 47.99284"	1189.18

Notes:

amsl

Above mean sea level Below ground surface bgs

Feet

MW Monitoring well

3.2 GROUNDWATER SAMPLING

The Toeroek Team collected groundwater samples from the monitoring wells (MW-1 and MW-2) following completion and development (see Appendix A, Figure 3). At MW-1, samples were collected within the screened interval of 88 to 98 feet bgs. Samples from MW-2 were collected within the screened interval of 123 to 133 feet bgs.

Water quality testing parameters (temperature, conductivity, pH, DO, ORP, and turbidity) were measured during well development by use of a Horiba multiparameter water quality meter, and were recorded onto micropurge groundwater sampling data sheets (Appendix H). Parameters were considered stabilized when values fluctuated no more than 10 percent over three consecutive readings. The wells were then sampled by use of low-flow QED Micropurge equipment. A bladder pump was lowered to the bottom of the well, raised 3 feet into the middle of the screen, and secured in place with hose clamps, and the pumping rate was set to 200 milliliters per minute.

Each groundwater sample was collected for analysis for VOCs into a 40-milliliter (mL) volatile organic analyte (VOA) vial preserved with hydrochloric acid (HCl). Sample vials were labeled and packaged accordingly—placed in a cooler maintained at or below a temperature of 4 degrees Celsius (°C) until submitted for analysis to the EPA Region 7 laboratory on May 29, 2018, under Analytical Services Request (ASR) 7817. Pertinent data, including sample locations and analyses to be performed, were recorded on field sheets (see Appendix D). Table 2 below summarizes sample locations, identification numbers, depths, and laboratory analyses.

TABLE 2

SUMMARY OF SAMPLES
FORMER ELECTROLUX, INC. FACILITY, JEFFERSON, IOWA

Sample Location	EPA Sample ID	Screen Interval (ft bgs)	Analyses
MW-1	7817-2	88-98	
MWA	7817-1	122 122	VOCs
MW-2	7817-1-FD	123-133	
Trip blank	7817-4-FB	NI/A	
Field blank	7817-5-FB	N/A	

Notes:

°N Decimal degrees North °W Decimal degrees West

FD Field duplicate

ft bgs Feet below ground surface

ID IdentificationN/A Not applicable

VOC Volatile organic compound

3.3 QUALITY ASSURANCE/QUALITY CONTROL SAMPLING

Field quality control (QC) sampling for this sampling investigation included a laboratory-supplied aqueous trip blank. Analytical data from the trip blank were referenced to determine whether contamination had been introduced during transportation of the containers and samples. Additional QC sampling consisted of collecting a field blank. The field blank sample was analyzed to assess field-introduced and laboratory-introduced contamination. One field duplicate sample collected from MW-2 was also submitted to evaluate total method precision. Table 2 above summarizes QC samples collected during the sampling investigation.

3.4 DECONTAMINATION

Drilling operations included use of a temporary equipment decontamination pad and staging area at the Jefferson City Water Plant at 1000 N Cedar Street. The Toeroek Team decontaminated micro-purge sampling equipment prior to first use and after sampling at each location. Decontamination consisted of thoroughly scrubbing the equipment with a non-phosphate detergent solution, and rinsing the equipment with deionized water. Decontamination of additional sampling equipment was not necessary because all other sampling equipment was disposable.

3.5 INVESTIGATION-DERIVED WASTE

Investigation-derived waste (IDW) consisted of expendable sampling supplies, personal protective equipment (PPE), disposable tubing, and drill cuttings. Because well locations were in areas where only groundwater contamination was anticipated, soils were loaded onto a trailer and transported to the Metro Park West Landfill in Perry, Iowa, for disposal. Purge water was containerized in a 330 gallon plastic polyethylene tote tank and disposed of at the City of Jefferson Water Department. Expendable sampling materials and PPE were disposed of as municipal solid waste.

4.0 ANALYTICAL DATA SUMMARY

During field activities conducted from May 21 through 25, 2018, the Toeroek Team collected groundwater samples to assess the possible presence of downgradient contamination related to historical facility operations. Samples were submitted to the EPA Region 7 laboratory in Kansas City, Kansas, for analysis. The following sections summarize analytical results from the sampling investigation. Field sheets and Chain-of-custody forms are in Appendix D, and the analytical data package is in Appendix E.

4.1 GROUNDWATER SAMPLE RESULTS

The Toeroek Team collected groundwater samples from groundwater monitoring wells installed at MW-1 and MW-2 (see Appendix A, Figure 3). Table 3 summarizes VOC sampling results. The VOC analyte chloroform was detected in all monitoring well samples. The sample collected at MW-1 contained chloroform at 3.1 μ g/L. Samples collected at MW-2 contained chloroform at 6.4 J μ g/L and 8.1 μ g/L (field duplicate). The J code (indicating an acceptable estimated value) for one of the chloroform results from MW-2 was applied due to low recovery of the analyte in the laboratory matrix spike. In no sample did the chloroform concentration exceed the maximum contaminant level (MCL) of 80 μ g/L.

TABLE 3

SUMMARY OF SAMPLE RESULTS
FORMER ELECTROLUX, INC. FACILITY, JEFFERSON, IOWA

			Chloroform Concentration (μg/L)	
Sample Location	EPA Sample ID	Screen Interval (ft bgs)		
MW-1	7817-2	88-98	3.1	
) (IV 2	7817-1	122 122	6.4 J	
MW-2	7817-1-FD	123-133	8.1	
Trip blank	7817-4-FB	27/4	1.0 U	
Field blank	7817-5-FB	N/A	1.0 U	

Notes:

bgs Below ground surface FD Field duplicate

MW Monitoring well μg/L Micrograms per liter

ft Feet

J Estimated value

4.2 QUALITY ASSURANCE/QUALITY CONTROL SAMPLING

QC samples collected during the sampling investigation included one aqueous trip blank, one field duplicate sample, and one field blank sample. Chloroform was detected at $8.1 \mu g/L$ in the field duplicate sample collected at MW-2. No VOCs were detected in the trip blank or field blank samples.

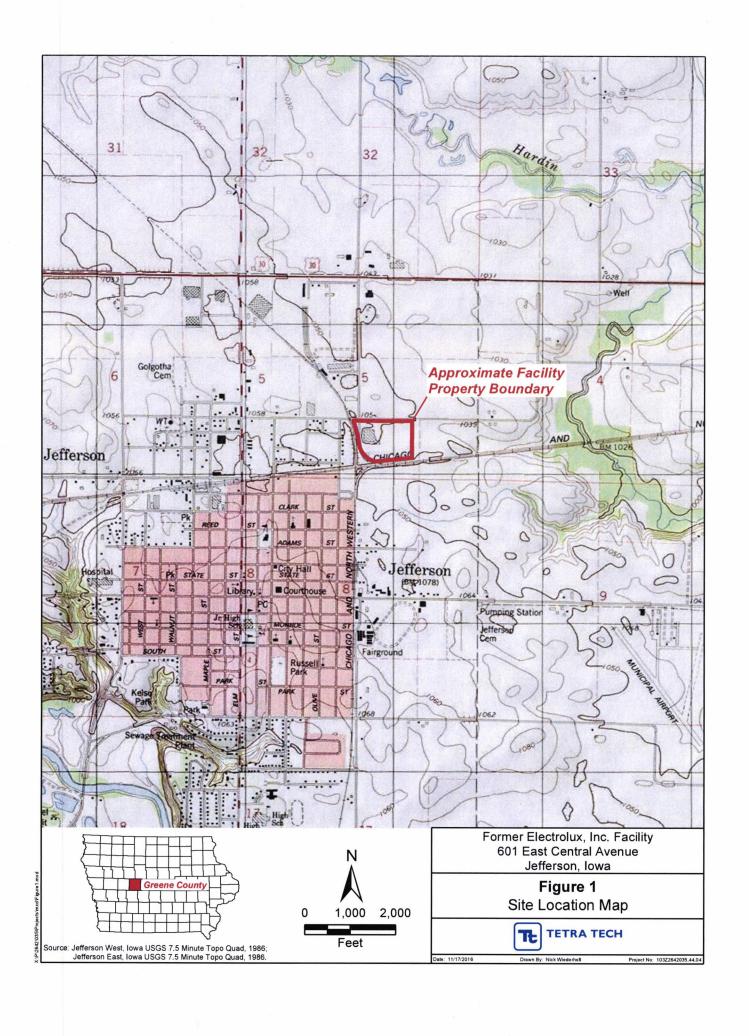
5.0 DEVIATIONS FROM THE SAP AND QAPP

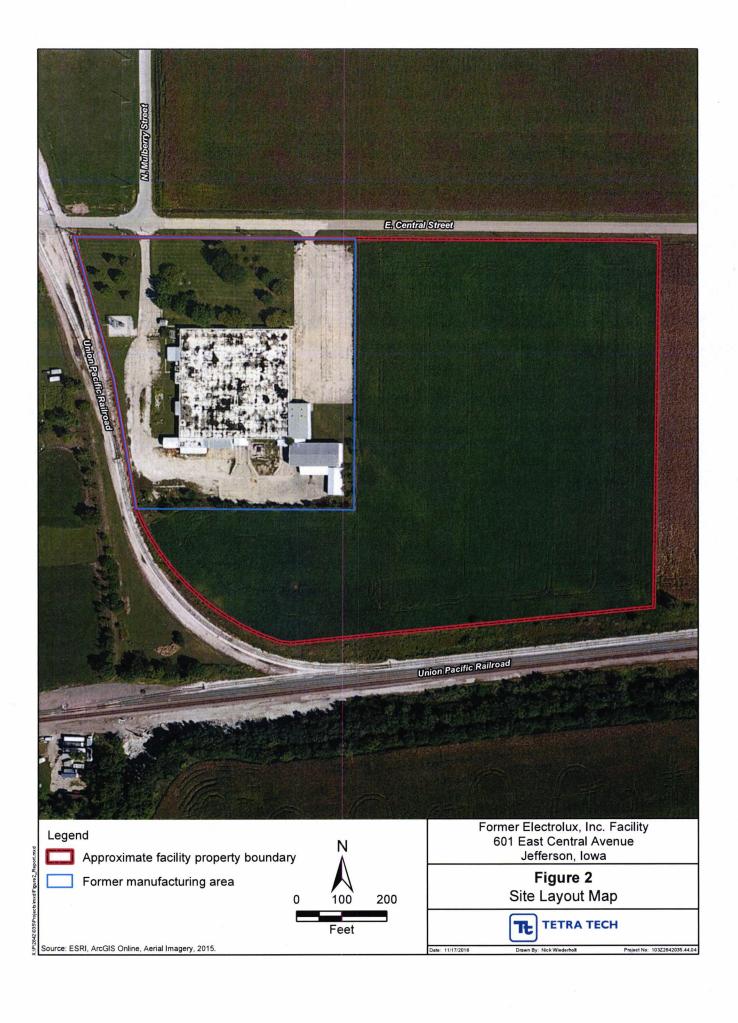
The following deviations from the EPA-approved SAP and QAPP occurred, and were communicated to the EPA Task Order Contracting Officer's Representative (TOCOR):

- MW-1 was screened from 88 to 98 feet bgs due to geologic conditions. At approximately 104 feet bgs, an impermeable grey shale was encountered. Following consultation with the EPA TOCOR, it was decided to continue drilling to 150 feet bgs. The grey shale was followed by interchanging layers of limestones, sandstones, and coal layers before returning to shale from 135 to 150 feet bgs. No significant sand and gravel was encountered. Upon further consultation with the TOCOR, MW-1 was screened from 88 to 98 feet bgs at the deepest interval thought to be viable for groundwater production.
- MW-2 was screened from 123 to 133 feet bgs due to geologic conditions. At approximately 134 feet bgs, an impermeable grey shale layer was encountered. Following consultation with the EPA TOCOR, it was decided to continue drilling to 150 feet bgs. The grey shale was underlain by a sub-bituminous coal layer from 144.5 to 149.5 feet bgs before returning to shale at 150 feet bgs. Upon further consultation with the TOCOR, MW-2 was screened from 123 to 133 feet bgs in a buff, very fine- to medium-grained, moist sand.
- Total volume of water used during construction of MW-1 was approximately 1,500 gallons.
 During development, MW-1 was purged dry after approximately 15 gallons. The well was
 allowed to recharge and the pumping rate was lowered to 0.1 gallon per minute (gal/min).
 Recharge was calculated to be approximately 0.08 gal/min. Due to the minimal recharge rate,
 MW-1 could not be developed as proposed in the QAPP, and water quality parameters were
 unable to be collected.
- Total volume of water used during construction of MW-2 was approximately 1,200 gallons. Due
 to the considerable amount of time that would have been required to remove the total volume of
 drilling fluids, development of MW-2 was concluded once water quality parameters had
 stabilized and following removal of approximately 350 gallons of water after approximately
 4 hours of pumping at the maximum rate attainable of 1.5 gal/min.

6.0 CONCLUSIONS

The Toeroek Team received Task Order No. 035 from EPA, under Contract No. EP-W-13-002, to provide assistance to RCRA state and federal program staff in EPA Region 7. Under Technical Directive No. 8 in Option Year 4 for this task order, EPA Region 7 requested that the Toeroek Team, as part of the groundwater sampling investigation, install two permanent monitoring wells downgradient of the former Electrolux, Inc. facility in Jefferson, Iowa.


From May 21 through 25, 2018, investigation activities proceeded to determine whether facility-related contamination had migrated downgradient toward City of Jefferson municipal wells. The Toeroek Team installed and sampled groundwater monitoring wells downgradient of the facility.


Based on data acquired during the sampling investigation, no facility-related contamination was found at downgradient sample locations; however, minor amounts of chloroform were detected in samples collected at MW-1 (3.1 μ g/L) and MW-2 (6.4J μ g/L and 8.1 μ g/L [field duplicate]). In no sample did chloroform concentration exceed the maximum contaminant level (MCL) of 80 μ g/L. The minimal quantities of chloroform found in the monitoring well samples may be attributed to the use of chlorinated municipal water used during the drilling process, or it could be a laboratory contaminant.

7.0 REFERENCES

- Golder Associates, Inc. (Golder). 2016. Site Assessment Summary Report, Former Electrolux Home Products, Inc. Facility, Jefferson, Iowa. October.
- Greene County, Iowa Assessor's Office. 2016. Online Parcel Report. Accessed November 15, 2016. http://greeneia.mygisonline.com/
- Tetra Tech, Inc. (Tetra Tech). 2016. Personal communication regarding Jefferson supply wells. From Brian Mitchell, U.S. Environmental Protection Agency (EPA) Region 7. To Kirk Mammoliti, Tetra Tech. November 16, 2016.
- Toeroek Associates. (Toeroek). 2017. "Former Electrolux Inc. Facility Groundwater Sampling Event Final Report of Findings, Revision 01". Prepared for EPA Region 7 under Contract No. EP W 13-002. June.
- Toeroek. 2013. "Programmatic Quality Assurance Project Plan, Revision 00." Prepared for EPA Region 7 under Contract No. EP-W-13-002. July.
- U.S. Geological Survey (USGS). 1986. Jefferson East, Iowa Quadrangle. 7.5-Minute Topographic Series.

APPENDIX A
FIGURES

APPENDIX B PHOTOGRAPHIC LOG

Former Electrolux, Inc. Facility Jefferson, Iowa

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the location of MW-2.	1
103G2642035.48.04			Date
Direction: Northeast	PHOTOGRAPHER	Kirk Mammoliti	5/21/2018

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the location of MW-1.	2
103G2642035.48.04			Date
Direction: Southwest	PHOTOGRAPHER	Kirk Mammoliti	5/23/2018

Former Electrolux, Inc. Facility Jefferson, Iowa

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the completed flush mount at MW-2.	3
103G2642035.48.04	DESCRIPTION	The photograph one to the complete and mean at MAN 2.	Date
Direction: Northeast	PHOTOGRAPHER	Kirk Mammoliti	5/25/2018

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the monitoring well being developed at MW-1.	4
103G2642035.48.04			Date
Direction: Southeast	PHOTOGRAPHER	Kirk Mammoliti	5/25/2018

APPENDIX C FIELD LOGBOOK

K51614

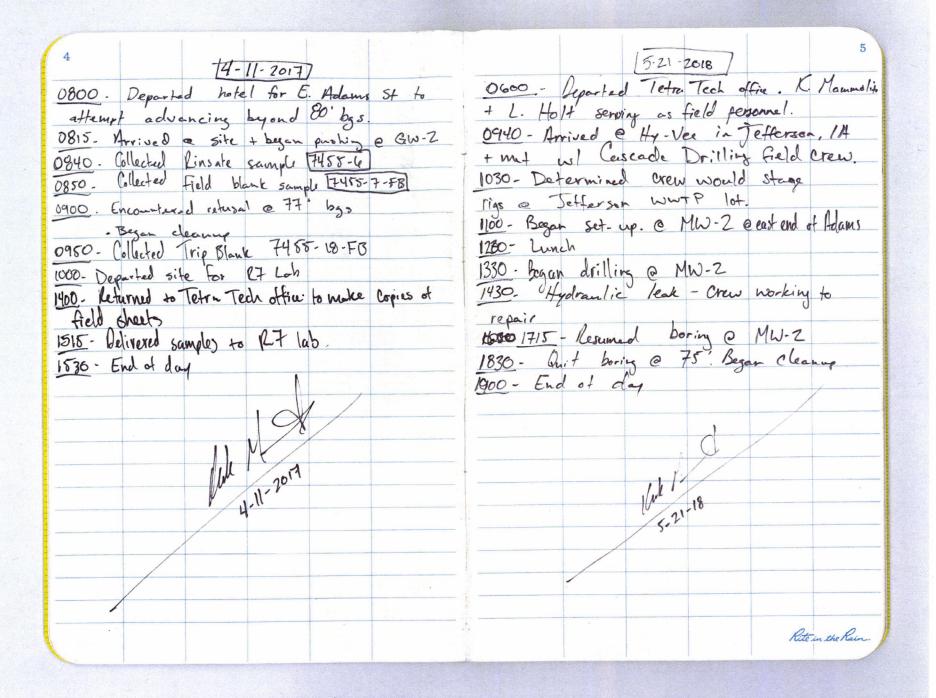
Rite in the Rain
ALL-WEATHER
LEVEL

Nº 311FX

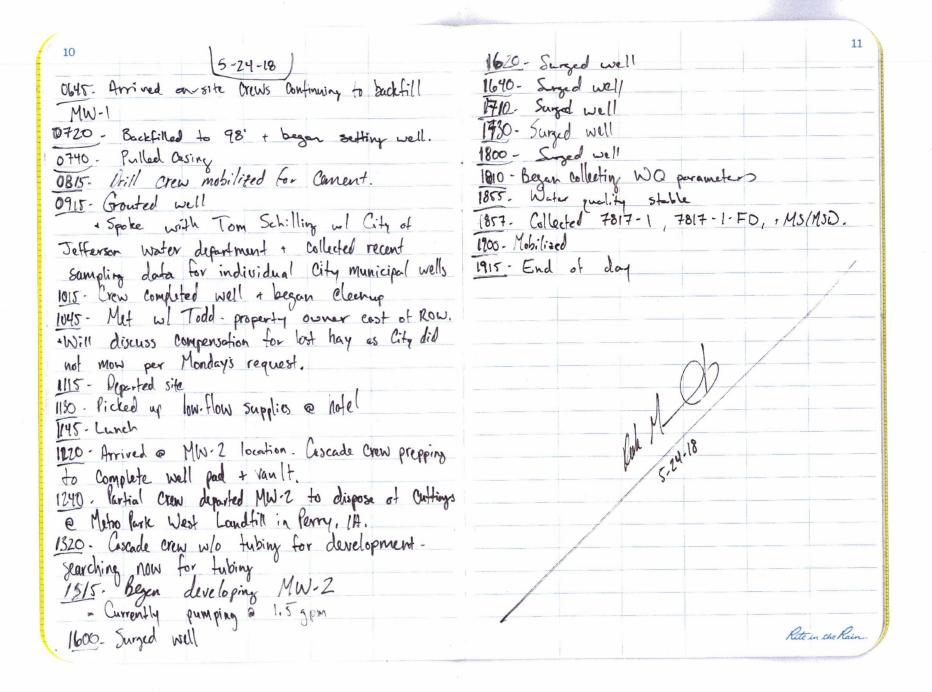
Electrolus Facility

JeHerson, lowis

103 G 26 4035-44.04.06


103 G 26 4035-48.04

If found please return to: Name Tetra Tech, Inc. Address 415 Oak Street Kansas City, MO 6410\$ Phone 8/6-4/2-1741 Project Electrodux Facility
Tefferson, lowa G 264035.44.04.06


CONTENTS

PAGE	REFERENCE	DATE
		the scientists are all the scientists and the scientists are all the scientists.
	·	
		manage or a second seco
		man a comment of the second
		· colored agreement y
	V	
*		algorithm

additional bentonite necessary to pluy 5-23-18/ 0700. Arrived on site. Cascade crews boring up to ~ 90' where well is Continuing installation of manitoring well # 2 planned to be screened (i.e. decent sond layer present @ that depth. currently growting well. 0725 - Completed growting, began pulling up 1640 - Mammo liti returned 1810 - Completed boring to ~150' (shell + saids fore) 0750 - Completed pulling Casing, began cleanup. 0830 - Completed cleanup, crews mobilized for 130 - inwhed Cleanup - will complete well tomorrow. Intend to backfill boring + will water. screen from 88: 981. 0900 - Began staging equipment @ MW-1 location 1735 - Aparted back to Carroll to retrieve on east side of N. Cedar, South of Re Crossing. remainder of beforite purchased for Cascado. 0955 - Began drilling @ MW-1 1800 - Arrived @ Briggs to pick up 1145 - Linch - ended @ 751 remainder of bentonite. 1220 - Resumed boring @ MW-1 1830 Finished loading bertonite. 1430 - Encountexed shall from 102-115' End of Day * Reviewed many nearby logs to decemine if conditions are typical. No significant Sand and grave layer was encountered during boring. It nearby well ~ 0.25 mile west Showed similar Conditions 1450- Called TOCOR Mitchell to discuss. Was informed crew should drill to 150' to Confirm impermedble Shale layer is present to such depth. 1530 - Resumed Doring. 1545. Mammo hati departed for Carroll to retrieve Rite in the Rain.

12 (5-25-18)	1225 - Suged well
0730 - Departed hotel - Cascade Crew w/o Concrete + trowel to construct surface	1230 - Boyan pumping well
Concrete + trowel to construct surface	1235 - Well dry
Completions	1318 - Surged + pumped
0815. Crews completed pads	1315 - well dy
- From BTOC @ MW. 2	1335 - Turned on pump to sumple as MW-1
TD = 133.95	will likely not classically develope in
SWC = 53.71	ocreened formation
0900 - Will wait for 24 hour grout setting	1345 - Collected parameters + sample
0940. Delivered well look key to Brian @	(7817-2)
Bolton-Mank to perform as-buil survey on	1400. Cleaned up + deported to- Carroll
Tuesday	to return CO2
1015- Begen development	1450 - Returned CO2 bottle - depended for office
- Pumping @ 1.5 gallons/man	1845 - Arrived e Tetre Tech office
1018 - Well any :	
- Indicates water level e 54.	
- le settin development pump	
1025 - Resumed jumping well - prim po set too high	
1035 - Fow has somed significantly (0.25-0.5 year)	
SWL dropped to > 93.5'	
SWL = 96.4	
1110 - Report Calculated ~ 0.08 gallon ser minute	
- Developing well @ 0.1 gpm - Driller only worth House worth Huid	5 3 3 3 3 3 3 3 3 3 3
- Driller only well well volume worth fluid	
during drilling	
145 well day	Rite in the Rain.

APPENDIX D FIELD SHEETS AND CHAIN OF CUSTODY

Sample Collection Field Sheet US EPA Region 7 Kansas City, KS

ASR Number: 7817	Sample Number: 1	QC Code: _	Matrix	c: Water	Гад ID: 7817-1
Project ID: BMEJI Project Desc: Electro City: Jeffers Program: RCRA	olux GW RCRA site invest son	-	Manager: I		ell
Location Desc:	MW-2 e east	end of Ad	eurs Stre	et	3
Storet ID:	Exter	rnal Sample N	umber: _		
Expected Conc:	(or Circle One: Lov	Medium Hig	h)	Date	Time(24 hr)
Latitude: 42, 0		mple Collection	on: Start:	5/24/18	<u>18:57</u>
Longitude: <u>ીપ</u> ં. ઉ	36333		End:	_/_/_	
	Preservative Hold		nalysis /OCs in Water b	oy GC/MS for	Low Detection Limits
Sample Comments: (N/A) @ MW - 2	-				
Includes MS					
TOC SWL = 1	33.95'				

Sample Collected By: $\top\!\!\!\top$

Sample Collection Field Sheet US EPA Region 7 Kansas City, KS

ASR Number: 7	7817 Sample Numbe	r: 3 QC Co	de: Matı	'ix: Water	Tag ID: 7817-X- Fis
City:	BMEJIARCRA Electrolux GW RCRA site Jefferson RCRA Corrective Action		oject Manager: mpling State:		chell
Location Desc:	@MW-2 rear	east end	of Adams	St	
Storet ID:		External Samp	ole Number:		
Expected Conc:	(or Circle One	e: (Low) Medium	High)	Date	Time(24 hr)
Latitude:	42.01832	Sample Coil	ection: Start:	5/24/1	8 18:57
Longitude:	<u>-94. 36333</u>		End:	//	
Laboratory An Container 3 - 40mL VOA vial	alyses: Preservative 4 Deg C, HCL to pH<2	Holding Time 14 Days	Analysis 1 VOCs in Wate	r by GC/MS fo	or Low Detection Limits
Sample Comme (N/A) A Field Dupl Sw					

Sample Collected By: $\top\!\!\!\top$

Sample Collection Field Sheet **US EPA Region 7** Kansas City, KS

ASR Number: 7	7817 Sample Number:	2 QC Cod	e: Matri	x: Water Tag	ID: 7817-2
Project ID: Project Desc:	BMEJIARCRA Electrolux GW RCRA site ir	-			
	Jefferson RCRA Corrective Action		State:	Iowa	
Location Desc:	@ MW-1 along	east side	et N. Co	idor St	
Storet ID:		xternal Samp	le Number: _		
Expected Conc	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
	42.022766	Sample Colle	ection: Start:	5/25/18	13:45
Longitude:	-94.36936Z		End:	_/_/_	:
Laboratory An	alyses:				
Container	Preservative	Holding Time	Analysis		
3 - 40mL VOA vial	4 Deg C, HCL to pH<2	14 Days	1 VOCs in Water	by GC/MS for Low I	Detection Limits
Sample Comme	ents:				

(N/A)

@MW-1 BTOC-TD = 98.51

Sample Collection Field Sheet US EPA Region 7 Kansas City, KS

ASR Number:	7817 Sample Number	: 4 QC Code: F	B Matrix: Water	Tag ID: 7817-4-FB
-	BMEJIARCRA Electrolux GW RCRA site		Manager: Brian Mito g	chell
	Jefferson RCRA Corrective Action		State: Iowa	
Location Desc:	LDL VOA Trip Blank			
Storet ID:	-	External Sample N	ımber:	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Expected Conc	(or Circle One	: Low Medium High) Date	Time(24 hr)
Latitude:		Sample Collectio	n: Start: 5/25/18	<u> 14: 30</u>
Longitude:			End://_	:_
Laboratory An	alyses:			
Container	Preservative	Holding Time An	alysis	
3 - 40mL VOA vial	4 Deg C, HCL to pH<2	14 Days 1 V	OCs in Water by GC/MS fo	r Low Detection Limits
Sample Comme	ents:			

Prepared by the LTAB.

Trip Blank

Sample Collected By: $\top\!\!\!\top$

Sample Collection Field Sheet US EPA Region 7 Kansas City, KS

ASR Number:	7817	Sample Number	* D	QC Cod	de: FB	Matri	ix: Water	Tag ID	: 7817-5-FB
Project ID: Project Desc:		ARCRA olux GW RCRA site	investiga		-	ager:	Brian Mitc	hell	
	Jeffer		_			tate:	Iowa		
Program:	RCRA	Corrective Action							
Location Desc:	LDL \	VOAFELA Blank	Þ		***************************************				
Storet ID:			Externa	l Samp	ole Numb	er: _		-	
Expected Conc	::	(or Circle One	: Low N	1edium	High)		Date		Time(24 hr)
Latitude:			Samp	le Coll	ection: S	tart:	5/25/18	<u>}</u>	14:95
Longitude:					1	End:	_/_/_	-	
Laboratory Ar	-						***************************************		
Container 3 - 40mL VOA vial		Preservative Deg C, HCL to pH<2	Holding 14	Time Days	Analysis 1 VOCs in		by GC/MS for	r Low Dete	ection Limits
Sample Commo Prepared in fi	ents:	tetra Tech							
* field	D/	ank							

Sample Collected By: $\top\!\!\!\top$

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

EPA PROJECT MANAGER	(Print)	ran	SITE OR S	AMPLING EVEN	RCRA,	1671	125	sen	. 11	} D/	ATE OF SAMPLE COLLECTION(S) SHEET MONTH DAY YEAR OF
D. Miserall	licu	land 1 1		CONTENTS							MONTH DAY YEAR \ \ OT \
		Т	YPE OF CONTAINER		OF SHIFTWIL		SAM	PLED	MEDI	A I	RECEIVING LABORATORY
ASR AND SAMPLE NUMBER	1 L PLASTIC BOTTLE	BOTTLE	BOTTLE CONTAINERS PER S	BOTTLE	VOA SET (3 VIALS EA)			HAZ WASTE		OTHER	REMARKS OTHER INFORMATION (condition of samples upon receipt, other sample numbers, etc.)
7817-1		HUMBER(S) OF C	JOH PAINERS FER S	AMI EL NOMOEK	3	X	, , , , , , , , , , , , , , , , , , ,				MS/MSD volume
7817-1-40					1	X					· Field duplicate
7817-2				10212112111	1	X	Y				
7817 - 4-FB					1	X					atrip Blank
7817-5-FB	1,7	Ad			1	X					* Field Blank
1		Ave				1		U		Le	cor 3
		14.51		A				1			14 30
	6	1.1									5 25 18
		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er had								15 45 E
	Total Control			1							
		31	50								
			102	7		1					
	118,700			70/							
	Company		-	198		4					
			4.5.174								
19 (See 7 29)	Line	PALS.	1		1						
		1		7107	1				T	1,53	
	10 mm 1 mm		4 7						T	110	
		-4.1		1		1		Г			
		1=21	MAN			1		1			
1	13,1114/1918		27,1111			1			1		
							7	15	T	1	
	1	ach	1 1	と強							
	DESCRIPTIO	N OF SHIPM	MENT							МО	DDE OF SHIPMENT
CONTAINE	ER(S) CONSIS	TING OF	CRATE	(S)		0	OM	MER	RCI	AL CA	RRIER
					-×	S	AM	PLE	RC	ONVE	
(4)				RSONNEL C	LISTODY P	ECC)DI				(SHIPPING AIRBILL NUMBER)
RELINQUISHED BY (PI	M/SAMPLER)	Гр	ATE TIME	RECEIVED		ECC	INL			DAT	E TIME REASON FOR CHANGE OF CUSTON
L. Manimo	liti	5	24- 1530	Nuis	1 1	il	7.		L	512	91 1530 April
SEALED RELINQUISHED BY (PI	UNSEA M/SAMPLER)		ATE TIME	RECEIVED E	BY	UNS	EA	LED	X	DAT	1 //00
CEALED	UNCEA		SEALED		UNS	EΑ	LED				
SEALED RELINQUISHED BY (PI	UNSEA M/SAMPLER)		ATE TIME	RECEIVED BY						DAT	TE TIME REASON FOR CHANGE OF CUSTO
SEALED	UNSEA	LED		SEALED UNSEALED					_		
RELINQUISHED BY (PI			ATE TIME	RECEIVED E	BY					DAT	TE TIME REASON FOR CHANGE OF CUSTON
SEALED	UNSEA	LED _		SEALED		UNS	SEA	LED	_		
EDA 0262 (DEVI AIAT)	JITOLA		WILLITE ODICIN	AI . FPA I AR .	YELLOW - EPA				_	R	

APPENDIX E ANALYTICAL DATA

United States Environmental Protection Agency Region 7 300 Minnesota Avenue Kansas City, KS 66101

Date: 06/19/2018

Subject: Transmittal of Sample Analysis Results for ASR #: 7817

Project ID: BMEJIARCRA

Project Description: Electrolux GW RCRA site investigation sampling

From: Margaret E.W. St. Germain, Chief

Laboratory Technology & Analysis Branch Environmental Sciences & Technology Division

To: Brian Mitchell AWMD/WRAP

Enclosed are the analytical data for the above-referenced Analytical Services Request (ASR) and Project. The Regional Laboratory has reviewed and verified the results in accordance with procedures described in our Quality Manual (QM). In addition to all of the analytical results, this transmittal contains pertinent information that may have influenced the reported results and documents any deviations from the established requirements of the QM.

Please ensure that you file this electronic (.pdf only) transmittal in your records management system. The Regional Laboratory will now retain all of the original hardcopy documentation (e.g. COC[s] and the R7LIMS field sheet[s], etc.) according to our ENST records management system.

Please contact us within 14 days of receipt of this package if you determine there is a need for any changes. Please complete the Online ASR Sample/Data Disposition and Customer Survey for this ASR as soon as possible. The process of disposing of the samples for this ASR will be initiated 30 days from the date of this transmittal unless an alternate release date is specified on the Online ASR Sample/Data Disposition and Customer Survey. It is critical that we receive your response in accordance to RCRA and the laboratory accreditation.

If you have any questions or concerns relating to this data package, contact our customer service line at 913-551-5295.

Enclosures

ASR Number: 7817 Summary of Project Information 06/19/2018

Project Manager: Brian Mitchell **Org:** AWMD/WRAP **Phone:** 913-551-7633

Project ID: BMEJIARCRA QAPP Number: 2017052

Project Desc: Electrolux GW RCRA site investigation sampling

Location: Jefferson **State:** Iowa **Program:** RCRA Corrective

Purpose: Compliance Monitoring Action

GPRA PRC: 000D99

Brian Mitchell

RCRA Corrective Action Officer

EPA Region 7 AWMD/WRAP

Per BMitchell email dated 3/26/18: This ASR is not part of a litigation hold at this

time.

Explanation of Codes, Units and Qualifiers used on this report

Sample QC Codes: QC Codes identify the type of sample for quality control purpose. **Units:** Specific units in which results are reported.

__ = Field Sample ug/L = Micrograms per Liter

FB = Field Blank
FD = Field Duplicate

Data Qualifiers: Specific codes used in conjunction with data values to provide additional information on the quality of reported results, or used to explain the absence of a specific value.

(Blank) = Values have been reviewed and found acceptable for use.

U = The analyte was not detected at or above the reporting limit.

UJ = The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

J = The identification of the analyte is acceptable; the reported value is an estimate.

ASR Number: 7817

Sample Information Summary

06/19/2018

Project ID: BMEJIARCRA Project Desc: Electrolux GW RCRA site investigation sampling

Sample QC No Code	Matrix	Location Description	External Sample No	Start Date	Start Time	End Date	End Time	Receipt Date
1	Water	@ MW-2 @ East end of Adams Street		05/24/2018	18:57			05/29/2018
1 - FD	Water	@ MW-2 @ East end of Adams Street		05/24/2018	18:57			05/29/2018
2	Water	@ MW-1 along East side of North Cedar Street		05/25/2018	13:45			05/29/2018
4 - FB	Water	LDL VOA Trip Blank		05/25/2018	14:30			05/29/2018
5 - FB	Water	LDL VOA Field Blank		05/25/2018	14:45			05/29/2018

Project Desc Electrolux GW RCRA site investigation sampling

ASR Number: 7817 06/19/2018

Analysis Comments About Results For This Analysis

VOCs in Water by GC/MS for Low Detection Limits

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3230.13F

Samples: 1-1-FD 4-FB 5-FB

Comments:

Project ID: BMEJIARCRA

reporting limits for cis-1,3-Dichloropropene, trans-1,3-Dichloropropene and Naphthalene have been raised (to 2ug/L, 2ug/L and 5ug/L, respectively) due to the accuracy issues at the lowest standard(s).

Bromoform (59%, LCL: 66%), Styrene (33 and 32%, LCL: 59%) and m- and/or p-Xylene (80 and 79%, LCL: 84%) were UJ-coded in sample 1. These analytes were not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJcoded) due to low recovery of these analytes in the laboratory matrix spike. The actual reporting limit for these analytes may be higher than the reported value.

Chloroform was J-coded in sample 1. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to low recovery of this analyte (94%, LCL: 95%) in the laboratory matrix spike. The actual concentration for this analyte may be higher than the reported value.

Dibromochloromethane was UJ-coded in sample 1. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJcoded) due to poor precision obtained for this analyte in the laboratory matrix spike and matrix spike duplicate (6.2%, PCL: 5.0%). The actual reporting limit for this analyte may be higher than the reported value.

ASR Number: 7817

RLAB Approved Sample Analysis Results

Project ID: BMEJIARCRA

Project Desc: Electrolux GW RCRA site investigation sampling

Analysis/ Analyte	Units	1	1-FD	2	4-FB
1 VOCs in Water by GC/MS for Low Detection	Limits				
Acetone Acetone	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	ug/L	1.0 UJ	1.0 U	1.0 U	1.0 U
Bromomethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Carbon Disulfide	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	ug/L	6.4 J	8.1	3.1	1.0 U
Chloromethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-Chloropropane	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	ug/L	1.0 UJ	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
trans-1,3-Dichloropropene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Ethyl Benzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Methyl Acetate	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Methyl tert-butyl ether	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Methylcyclohexane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Methylene Chloride	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-Pentanone	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Naphthalene	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	ug/L	1.0 UJ	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U

RLAB Approved Sample Analysis Results

06/19/2018

Project ID: BMEJIARCRA **Project Desc:** Electrolux GW RCRA site investigation sampling

ASR Number: 7817

Analysis/ Analyte	Units	1	1-FD	2	4-FB
Trichloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichlorotrifluoroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
m and/or p-Xylene	ug/L	2.0 UJ	2.0 U	2.0 U	2.0 U
o-Xylene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U

RLAB Approved Sample Analysis Results

Project ID: BMEJIARCRA

ASR Number: 7817

Project Desc: Electrolux GW RCRA site investigation sampling

Analysis/ Analyte	Units	5-FB
1 VOCs in Water by GC/MS for Low Detection Lir	mits	
Acetone	ug/L	5.0 U
Benzene	ug/L	1.0 U
Bromodichloromethane	ug/L	1.0 U
Bromoform	ug/L	1.0 U
Bromomethane	ug/L	1.0 U
2-Butanone	ug/L	5.0 U
Carbon Disulfide	ug/L	1.0 U
Carbon Tetrachloride	ug/L	1.0 U
Chlorobenzene	ug/L	1.0 U
Chloroethane	ug/L	1.0 U
Chloroform	ug/L	1.0 U
Chloromethane	ug/L	1.0 U
Cyclohexane	ug/L	1.0 U
1,2-Dibromo-3-Chloropropane	ug/L	5.0 U
Dibromochloromethane	ug/L	1.0 U
1,2-Dibromoethane	ug/L	1.0 U
1,2-Dichlorobenzene	ug/L	1.0 U
1,3-Dichlorobenzene	ug/L	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U
1,1-Dichloroethane	ug/L	1.0 U
1,2-Dichloroethane	ug/L	1.0 U
1,1-Dichloroethene	ug/L	1.0 U
cis-1,2-Dichloroethene	ug/L	1.0 U
trans-1,2-Dichloroethene	ug/L	1.0 U
1,2-Dichloropropane	ug/L	1.0 U
cis-1,3-Dichloropropene	ug/L	2.0 U
trans-1,3-Dichloropropene	ug/L	2.0 U
Ethyl Benzene	ug/L	1.0 U
2-Hexanone	ug/L	5.0 U
Isopropylbenzene	ug/L	1.0 U
Methyl Acetate	ug/L	5.0 U
Methyl tert-butyl ether	ug/L	1.0 U
Methylcyclohexane	ug/L	1.0 U
Methylene Chloride	ug/L	1.0 U
4-Methyl-2-Pentanone	ug/L	5.0 U
Naphthalene	ug/L	5.0 U
Styrene	ug/L	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U
Tetrachloroethene	ug/L	1.0 U
Toluene	ug/L	1.0 U
1,2,3-Trichlorobenzene	ug/L	1.0 U
1,2,4-Trichlorobenzene	ug/L	1.0 U
1,1,1-Trichloroethane	ug/L	1.0 U
1,1,2-Trichloroethane	ug/L	1.0 U

RLAB Approved Sample Analysis Results

06/19/2018

Project ID: BMEJIARCRA Project Desc: Electrolux GW RCRA site investigation sampling

Analysis/ Analyte	Units	5-FB
Trichloroethene	ug/L	1.0 U
Trichlorofluoromethane	ug/L	1.0 U
1,1,2-Trichlorotrifluoroethane	ug/L	1.0 U
Vinyl Chloride	ug/L	1.0 U
m and/or p-Xylene	ug/L	2.0 U
o-Xylene	ug/L	1.0 U

ASR Number: 7817

APPENDIX F
BORING LOGS

_	None					Parameter (Flavor Flancisco)			
L							Вс	ring	Log Form
	Sit	e Na	me:	Former	Electro	lux			Boring Number: MW-1
	Da	te Di	rilled (Start/Fir	nish):	5/23/2018			
			Meth		Rotary				
-				pany:		de Drilling			7.118.45.61
		vati		1050.30		65°, -94.369	200420	O°	Total Depth: 150 feet
			o Wat		.7 10330	00 , -94.308	9299420	9	Geologist: L. Holt
-			Numl		103G2	642035.48	.04.06		Weather: Sunny, Warm
H	\neg			B 6			Γ		
Sample	Interval	Interval	Soil Recv.	PID Reading (ppm or ppb)	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log	Description and Remarks
									Top soil, brown, damp.
							CL/ML		CLAY, silty, sandy with small gravel, tan-brown with iron mottling , soft, plastic; moist.
					_		SP		SAND, tan, fine grained, damp.
									CLAY, silty, with small gravel, brown, soft, plastic; moist.
					_ _ _ _ _ _ _ 25		CL/ML		CLAY, silty, with small gravel and trace amounts of very fine grained sand, brown-grey, firm, non-plastic; damp.
					_ _				CLAY as above, grading to dark grey in color, and increasing sand content with depth.
					_ _ 				SAND, clayey, silty, grey, very fine to fine grained; moist.

_	-			er (et europe							
_								Во	ring	Log Form	
-		e Na			Former					Boring Number: MW-1	
	Date Drilled (Start/Finish): 5/23/2018 Drilling Method: Rotary Sonic										
-					any:		ide Drilling				
		vatio			1050.30					Total Depth: 150 feet	
-						271633	65°, -94.369	92994209)°	Geologist: L. Holt	
	Depth to Water:Geologist: L. HoltProject Number:103G2642035.48.04.06Weather: Sunny, Warm										
Sample	Interval	Interval	Soil Booy	Soll Necv.	PID Reading (ppm or ppb)	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log	Description and Remarks	
						_		SC/SM		SAND, clayey, silty, grey, very fine to fine grained; moist.	
						_ _ 		CL/SC		Clayey SAND/sandy CLAY, grading from grey to dark grey, very fine grained, firm; damp.	
								CL/ML		CLAY, silty, with small gravel and trace amounts of very fine grained sand, brown-grey, firm, moderately plastic; damp.	
						_ _ _ _ 50				CLAY, as above, with inscreasing sand content.	
						_		SC/SM		SAND, clayey, silty, tan-grey, very fine to coarse grained with small gravel; damp.	
								CL/ML		CLAY, sandy, silty, with small gravel, tan-yellow with iron mottling, very fine to coarse grained, increasing sand content with depth, non-plastic; damp.	
						_ _ 60		SC/SM		SAND, clayey, silty, brown-buff with iron mottling; damp.	

								Во	ring	Log Form
s	ite	Nar	ne:		Former	Electro			Boring Number: MW-1	
Date Drilled (Start/Finish): 5/23/2018 Drilling Method: Rotary Sonic										
_						Rotary	de Drilling			
_		atio		_	1050.30		de Brilling			Total Depth: 150 feet
<u>c</u>	001	rdin	ate	s:	42.022	71633	65°, -94.369	2994209	0	
_		th to								Geologist: L. Holt
-	roje	ect	Nur	nbo		103G2	2642035.48.	04.06		Weather: Sunny, Warm
Sample	Interval	Interval	Soil Recv.		PID Reading (ppm or ppb)	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log	Description and Remarks
								SC/SM		SAND, clayey, silty, tan with iron mottling, very fine to coarse grained with well rounded small gravel, increasing coarseness with depth; damp.
						65 - - - - 70				CLAY, silty, tan with iron mottling, thin sand lenses at 67 and 70 ft, moderately firm, moderately plastic; damp.
						_ _ _ _ _ 75				CLAY, silty, tan-orange, thin sand lenses at 71, 73, and 75 ft, moderately firm, moderately plastic; damp.
		-				- - - 80 - - - 85		CL/ML		CLAY, silty, with trace amounts of sand and small gravel, brown grading to dark grey, increasing sand content with depth, moderately firm, moderately plastic; damp.
						90		SC/SM		SAND, clayey, silty, tan with iron staining, very fine to medium grained; moist.

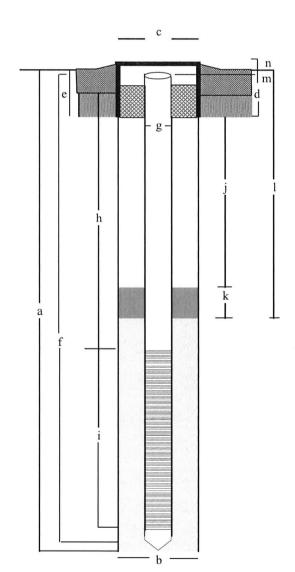
Sit	e Na	me:	Forme	r Electro	olux			Boring Number: MW-1	
Da	te D	rilled	(Start/Fi	inish):	5/23/2018				
		Met		Rotary					
					de Drilling				
	evati		1050.3		65°, -94.369	200/200	١٥	Total Depth: 150 feet	
		o Wa		27 1000	00 , -94.008	72994209		Geologist: L. Holt	
_		Num		103G2	642035.48.0	04.06		Weather: Sunny, Warm	
Sample Interval	Interval	Soil Recv.	PID Reading (ppm or ppb)	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log	Description and Remarks	
				_		SC/SM		SAND, clayey, silty, tan, medium well rounded grains, poorly graded; moist.	
				F		CL/ML		CLAY, silty, sandy, dark grey, moderately firm, moder plastic; damp.	
			1	95		SP		SAND, grey-tan, medium to coarse well rounded grain damp to moist.	
				_		CL/ML	,	CLAY, silty, sandy, dark grey, with small gravel and tra amounts very fine grained sand; damp.	
	100					SP-SC		SAND, clayey, grey, very fine to fine grained; moist.	
				_		CL/ML		CLAY, silty, sandy, with small gravel, dark grey becommottled with orange, red and black, moderately firm; of	
						C COAL, black, sub-bituminous, soft; dry.			
				105		CL/ML		CLAY, silty, transitioning to SHALE; dry.	
				_				SHALE, grey, with dark grey, red, brown, orange, and purple mottling, waxy, friable.	
				110		SH		SHALE, grey with red mottling grading to all grey, wax hard.	
				_ _ _ 115				SHALE, tan-brown grading to brown-grey, waxy, hard	
		Τ		_ _ _		SH LS SST		Difficult drilling between 115 and 135 ft lead to poor recovery which was reduced to a 5 ft interval containing only the hardest materials. Recovered materials cons	

_	Boring Log Form												
_						В	oring	Log Form					
	ite Na			r Electro				Boring Number: MW-1					
_		rilled(Meth	Start/Fi	nish): Rotary									
_					de Drilling								
_	levati		1050.3					Total Depth: 150 feet					
		nates: to Wat		271633	65°, -94.36	9299420	9°	Geologist: L. Holt					
_		Numb		103G2	642035.48.	04.06		Weather: Sunny, Warm					
	T		gr (do										
Sample Interval	Interval	Soil Recv.	PID Reading (ppm or ppb)	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log	Description and Remarks					
						SH LS SST		Difficult drilling between 115 and 135 ft lead to poor recovery which was reduced to a 5 ft interval containing only the hardest materials. Recovered materials consisted of had SHALE, LIMESTONE, and SANDSTONE.					
	140 SH		SH		SHALE, grey, waxy, soft. SHALE, dark brown, waxy, soft.								
	145 C							COAL, black, sub-bituminous, soft; dry.					
				_ _ _ _ _ 		SH		SHALE, grey, hard.					

	Boring Log Form												
	C:4	o N-			Form	Elact:	aluv	В	oring				
-		e Na te Dr			Former Start/Fir		5/21/2018			Boring Number: MW-2			
		lling					y Sonic						
	Dri	lling	Со	mp	any:	Casca	ade Drilling						
-		vatio	-		1058.01					Total Depth: 150 feet			
		ordii pth t				331186	57°, -94.36	333134	42°	Geologist: L. Holt			
		oject				103G	2642035.48	Weather: Partly Cloudy, Warm, Breezy					
F	T			$\overline{}$		T							
Sample	Soil Recv. Soil Recv. PID Reading (ppm or ppb) Depth (Feet) Lithology Graphic Log								Graphic Log	Description and Remarks			
					_ _ _ _ _ _ 5	_		CL/ML		6 inches Top Soil Silty clay / Clayey Silt, dark brown, firm, non-plastic; damp.			
								CLAY, silty, medium brown transitioning to tan, trace very fine grained sand, increasing moisture and plasticity with depth.					
					10			CLAY, silty, sandy, medium brown, soft, plastic, fine to coarse grained with small gravel; moist.					
						15				CLAY, silty, sandy, medium brown with iron mottling, very fine to fine grained, moderately firm, moderately plastic; damp.			
						- - -		CL		CLAY, silty, sandy, tan-brown, very fine to coarse grained with small gravel, soft, plastic; moist			
						20				CLAY, as above becoming firm, non-plastic; damp.			
						_				CLAY, silty, sandy, tan-brown, medium grained, very soft, plastic; moist.			
						_ _ 				CLAY, as above becoming firm and moderately plastic, with increasing grain size; damp.			
	- - - - - 30						9			CLAY, sandy, dark grey-brown, very fine to coarse grained, moderately plastic, firm; moist.			

_										
L								Во	ring	Log Form
33	_	e Na			Former					Boring Number: MW-2
١.							5/21/2018			
•		illing illing			any:		y Sonic ade Drilling			
	_	evati			1058.01					Total Depth: 150 feet
						331186	657°, -94.36	3331344	l2°	
		pth t oject				103G	 2642035.48	3 04		Geologist: L. Holt Weather: Partly Cloudy, Warm, Breezy
H	7	,				T				Treatment and elecation, training process
Sample	Interval	Interval	Soil Recv		PID Reading (ppm or ppb)	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log	Description and Remarks
					_ _ _ _ _ _ 	_ _ _ _ _ _ 35		CL/ML		CLAY, silty, sandy, dark grey-brown, very fine to coarse grained with small gravel, moderately plastic, firm; moist.
						40	g.	SC/SM		SAND, silty, clayey, grey-tan, fine to coarse grained, with small gravel; moist to wet.
						_ 45				CLAY, sandy, silty, dark grey, very fine to fine grained, moderately plastic; moist.
						_ _ _ _ 		CL/ML		CLAY, sandy, silty, dark grey-tan, fine to coarse grained with small gravel, decreasing sand content with depth; moist.
						_ _ _ _ _ 55				CLAY, silty, sandy, dark grey-tan, medium to coarse grained, with small gravel, firm, non-plastic; damp.
						- -	*	CL/SC		Sandy CLAY to clayey SAND, dark grey, iron mottling, very fine to fine grained, with small gravel; damp.
						_ _ 		CL/ML		Silty CLAY to clayey SILT, sandy, orange-brown, very fine to fine grained, non-plastic, hard; damp.

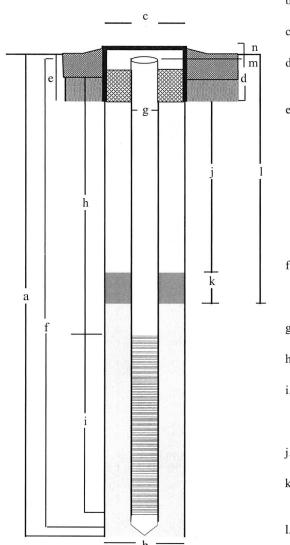
		-					99.00 STORE AND THE SHARE AND THE		
							В	oring	Log Form
s	ite Na	ame): 	Former	Electro	olux			Boring Number: MW-2
_						5/21/2018			
	rilling rilling			od: oany:		y Sonic ade Drilling			
_	levat			1058.01		ade Dilling			Total Depth: 150 feet
_						657°, -94.36	3331344	12°	
_	epth								Geologist: L. Holt
<u>P</u>	rojec	t Nı	umb		103G	2642035.48	3.04		Weather: Partly Cloudy, Warm, Breezy
Sample								Graphic Log	Description and Remarks
					_		CL/ML		CLAY, silty, orange-brown, with small gravel and trace amounts of fine grained sand; damp.
		_		65			CLAY, silty, with small gravel, orange-brown with grey and tan mottling; damp.		
							SP/GP		SAND and GRAVEL, tan-orange, fine to coarse grained; damp.
					L		SP		SAND, tan, very fine to medium grained; damp.
					CL/ML	e.	CLAY, silty, with small gravel, grey with iron mottling, non-plastic, very hard, damp.		
					80 - - 85 - - - 90		CL/ML		CLAY, sandy, silty, with small gravel, grey-tan, very fine to coarse grained, non-plastic, hard; damp.


_									
						В	oring	Log Form	
Si	ite Na	me:	Forme	r Electr	olux			Boring Number: MW-2	
_					5/21/2018				
		Meth		Rotary	de Drilling				
_	evati		1058.0		de Dilling			Total Depth: 150 feet	
С	oordi	nates	42.01	831186	657°, -94.36	333134	42°	·	
_		o Wa						Geologist: L. Holt	
P	roject	Num		103G2	2642035.48	.04		Weather: Partly Cloudy, Warm, Breezy	
Sample	Interval	Soil Recv.	PID Reading (ppm or ppb)	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log	Description and Remarks	
	×			_ _ _ _ _ _ 95			CLAY, silty, with trace amounts of small gravel, dark greytan, non-plastic, hard; damp.		
						CL/ML		CLAY, silty, sandy, tan grading to tan-grey, non-plastic, sti hard; damp.	
						SP		SAND, tan, fine grained, well sorted; damp. SAND, tan, medium to coarse grained; moist. SAND, silty, tan, fine to medium grained; moist. SAND, pinkish tan with some black mottling, soft; moist.	

	Boring Log Form													
-	Site	e Na	me:	Forme	r Electr	olux		omig	Boring Number: MW-2					
_	_					5/21/2018								
_				hod:		/ Sonic								
_						de Drilling			7.118.41.450.61					
_		vatio		1058.0		657°, -94.36	33313	112°	Total Depth: 150 feet					
_				ater:	031100	557 , -94.50	133313	442	Geologist: L. Holt					
_					1030	G2642035.4	8.04		Weather: Partly Cloudy, Warm, Breezy					
Sample								Graphic Log	Description and Remarks					
					125		SP		SAND, buff, very fine to fine grained, soft; damp.					
				SAND, clayey, buff-grey with iron staining, very fine grained, soft, decreasing clay content with depth; damp.										
				135		SH		SHALE, dark grey grading to light grey, waxy, friable; dry. COAL, black, sub-bituminous, soft, contains minor amounts of pyrite; dry.						
					_ _ 		SH		SHALE, light grey, waxy, friable; dry.					

APPENDIX G MONITORING WELL CONSTRUCTION FORMS

Tetra Tech Monitoring Well Construction Log


Project Name:	Former Electrolux		Well No:	MW-1	Date: May 24, 2018
Project No:	103G2642035.48.04	Drilling Method:	Rotary Son	ic	
			Cascade Dr	illing	
Geologist:	L. Holt		Schofield, V	Wisconsin	

a.	Total Boring Depth:	150 ft (backfilled to 99 ft)
b.	Boring Diameter:	9"
c.	Diameter of Protective Casing:	6"
d.	Length of Protective Casing: Type of Protective Casing:	10" Steel Vault
e.	Appx. Top of Annular Seal: Type of Seal Used: Por	tland Cement and Bentonite Mix
	Surface Casing Length/Diamet Type of Surface Casing: Secondary Casing Length/Diamet	NA
	Depth of Centralizer(s) if any: Type of Centralizer(s):	NA NA
f.	Total Riser Casing Length: Length of Sediment Sump: Casing Type:	98.30 ft 0.35 ft Schedule 40 PVC
g.	Inner Diameter:	2"
h.	Depth to Screen:	88 ft
i.	Screen Length: Screen Interval: Screen/Slot Type:	10 ft 88-98 ft 10 slot
j.	Top of Bentonite Seal:	79 ft
k.	Thickness of Seal: Type of Seal Material:	7 ft Cetco 3/8" Pellets
1.	Depth to Top of Filter Pack: Type of Filter Pack:	Red Flint # 40 Silica Filter Sand
m. n.	Elevation of T/Casing: Surface Elevation:	1050.30 ft amsl

Tetra Tech Monitoring Well Construction Log

Project Name:	Former Electrolux		Well No:	MW-2	Date: May 21-22, 2018
Project No:	103G2642035.48.04	Drilling Method:	Rotary Soni	ic	
			Cascade Dr	illing	
Geologist:	L. Holt		Schofield, V	Wisconsin	

a.	Total Boring Depth:	151 ft (backfilled to 134 ft)
b.	Boring Diameter:	9"
c.	Diameter of Protective Casing:	6"
d.	Length of Protective Casing: Type of Protective Casing:	10" Steel Vault
e.	Appx. Top of Annular Seal: Type of Seal Used: Por	tland Cement and Bentonite Mix
	Surface Casing Length/Diameter Type of Surface Casing: Secondary Casing Length/Diameter	NA
	Depth of Centralizer(s) if any: Type of Centralizer(s):	NA NA
f.	Total Riser Casing Length: Length of Sediment Sump: Casing Type:	133.95 ft 0.35 ft Schedule 40 PVC
g.	Inner Diameter:	2"
h.	Depth to Screen:	123 ft
i.	Screen Length: Screen Interval: Screen/Slot Type:	10 ft 123-133 ft 10 slot
j.	Top of Bentonite Seal:	113 ft
k.	Thickness of Seal: Type of Seal Material:	Cetco 3/8" Pellets
l.	Depth to Top of Filter Pack: Type of Filter Pack:	Red Flint # 40 Silica Filter Sand
m. n.	Elevation of T/Casing: Surface Elevation:	1058.01 ft amsl

APPENDIX H MONITORING WELL DEVELOPMENT FORMS

Well Development Data Sheet

	Well Name:	MW- 2	_				2"				
Site N	ame/Location:		Electron	the.			Well Depth:	/33.	95'bra		
Pr	oject Number:		04203			S	creen Interval:	123-1			
	Purge Date:	5/24	118			Initial Stat					
Sampli	ng Personnel:	K. Man	moliti.L	. Holt							
			, ,			SWL After					
	Sample ID:	7817-	1		1	Drawdown	not to Exceed ^{1:}				
Sam	ple Date/Time:	5/24/	18 18	357		3 well volumes	s (max. purge):				
Duplica	ate Sample ID:	7817.	1- FQ			Imr	miscible Layer:				
	Volume	Discharge	Dissolved	Water Qu	ality Informat	tion	ms/cm				
Time	Purged (Gallons)	Rate (mL/min)	Oxygen (mg/L)	pН	Eh/ORP (mV)	Temp (C)	Sp. Cond (umhos/cm/ºC)	Turbidity (NTU)	Depth to Water (ft)		
1815	275	1.5	0.78	8.18	-299	17.41	0.926	0.0			
1820			4.49	8.26	- 233	17.08	0.822	440			
1825			6.25	8.04	-293	15.69	0.807	294			
1830			0.43	7.95	-315	14.89	0.825	244			
1835			0.34	7.89	-309	14.47	0.908	224	1 11		
1840	0.34 7.82					14,67	0 833	1770			
1848			0.62	7.81	-260	14.41	0 979	99.2			
1350			0.59	7.80	-297	14.07	0.833	117			
1855			0.56	7.77	-297	13,99	0,828	88.5			
1000			0,00	1.71	001	101-11	0,000	00.0			
Notes: Atlernate su	rging and purgi	ing for a minir	mum of 2 hou	rs. Surge ~	15 min follov	ved by pumpir	ng ~ 20 min or u	ıntil after it cleaı	rs up.		
Comments:							Collo ale	ms los)		
Pumping Inte					Surging Inter		ancore	rd ms/ms/s Volume.			
	515 - 1549 - 1588										
and the same of th	1558-1622										
	1630-1640 ** ** ** ** ** ** ** ** ** ** ** ** **										
1713-1731											
1746	-1802	•			1802-						
	1815										

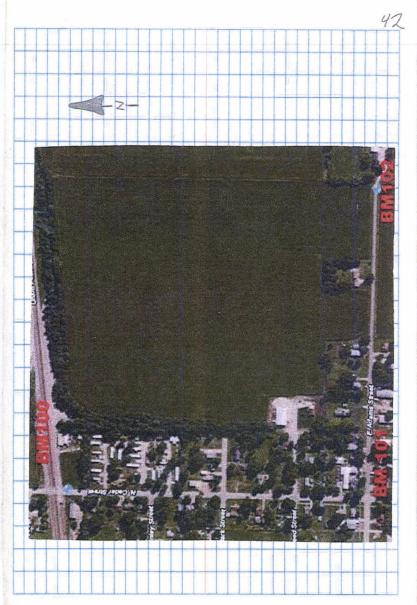
Well Development Data Sheet

	Well Name:	mw-	MING-1			Well Diameter:			2"	
Site Name/Location:		Former Electrolius			Well Depth:			98.301 bta		
Project Number:						Screen Interval:				
	Purge Date:	5/25/18	5/25/18			Initial Static Water Level:			25.6 ptoc	
Sampl	ing Personnel:	K. Mammoliti, I. Hold			Water Column:					
					SWL After Pump Placed:					
Sample ID:		7817	-2		Drawdown not to Exceed ^{1:}					
Sam	ple Date/Time:	5/25/18 13:45			3 well volumes (max. purge):					
Duplic	ate Sample ID:			Immiscible Layer:						
	Volume	gov M Discharge	Dissolved	Water Qu	ality Informa	tion	ms/cm			
Time	Purged (Gallons)	Rate (mL/min)	Oxygen (mg/L)	pН	Eh/ORP (mV)	Temp (C)	Sp. Cond (umhos/cm/°C)	Turbidity (NTU)	Depth to Water (ft)	
1345	~20	1.4	5.50	7.77	~8	24.99	1.01	0 *		
							st Wader i	e weihl	y turbio	
			8						1	
							34 Des	mateur	ovicy	
						1				
						X		***************************************		

Notes:										
	rging and purgi	1.77		rs. Surge ~	15 min follov	ved by pumpir	ng ~ 20 min or u	ntil after it clear	s up.	
· · · · · · · · · · · · · · · · · · ·		~1.4	gol/mir	7						
Comments:						nok	. Well	hent dry will a rate a hecomes:	pampy	
11 2000			Surging Interval AD New at law			a rake	ehen			
1010	1015 X WALL	was not a	u the way is	n the well			recharge	heemes:	Por money	
10A2 - See note				1225 - 1230 1/30 STI			noing at o.	Por recharge		
1230 - 1295 Dry Danarging				1252			" 0	Julia .		
									I	

APPENDIX I MONITORING WELL SURVEY DATA

MON	TORNO	WELL	s JBI	EF ERSO	v
		X SIT			
		11603-			
		200.00			
CONFIC	: IA	RTN-	N4V83	-612	4
COORD	S: IA	SVORTH	1		
TRIMBL	E TABL	FT-R10)		
BM 100	34725	89	468502	5_	1054.45
BM 101	3470885		4684958	Agreements.	1056.97
					1057.03 GAS
BM 102	347087	76_	468673	3	1062.14



Lauren Holt Geologist

415 Oak Street, Kansas City, MO 64106
Direct +1.816.412.1760 Cell +1.913.951.7812 Fax +1.816.410.1748
lauren.holt@tetratech.com tetratech.com

SFO 5/29/18 SUNNY BLF CHECKED ELEV NGS BM 1041.40 (R) 224 ORDER RR SPIKE IN BOLT ON HYDT. E. EUR OF RR SPICE IN 645T MW SONTH CW. RIM 3470916.7 1058.01 Mu NORTH (U. RIM) 1050.30

TRIMBLE	57	LEVEZ	- H.T.	
HT 1	135	1058.01		
BM 102		1062.14		
TP 1		1055,-688		
TP2		1054.924		
BM 101		1056,971	1057.03	GP5
TP3		1056.164		
TPY		1049.267		
BM100 -		1054.45		
MW N		1050.30		
		2		
				-

	2000			
	windows and in the second state of the second			

MONITORING WELLS **ELECTROLUX SITE** JEFFERSON, IOWA

BM100 3472589'

4685025'

1054.45'

R.R. SPIKE IN 1ST POWER POLE SOUTH OF U.P. TRACKS

EAST SIDE OF CEDAR STREET.

BM101

3470885'

4684958'

1056.97'

NORTH CAP BOLT ON FIRE HYDRANT, SOUTHWEST CORNER OF N. CEDAR & E. ADAMS

BM102

3470876'

4686733'

1062.14'

R.R. SPIKE IN LAST POWER POLE AT THE EAST END OF

E. ADAMS STREET

MW-NORTH

3472538.3'

4685043.7'

1050.31

MW-SOUTH

3470916.7'

4686648.9'

1058.01'